A dimensionality reduction technique for 2D scattering problems in photonics
نویسندگان
چکیده
This paper describes a simulation method for 2D frequency domain scattering problems in photonics. The technique reduces the spatial dimensionality of the problem by means of global, continuous mode expansion combined with a variational formalism; the resulting equations are solved using a finite element method. Transparent influx boundary conditions and perfectly matched layers are employed at the computational window boundaries. Numerical examples validate the method.
منابع مشابه
Variational Effective Index Method for 3D Vectorial Scattering Problems in Photonics: TE Polarization
In order to reduce the computational effort we develop a method for 3D-to-2D dimensionality reduction of scattering problems in photonics. Contrary to the ‘standard’ Effective Index Method the effective parameters of the reduced problem are always rigorously defined using the variational technique, based on the vectorial 3D Maxwell equations. Results for a photonic crystal slab waveguide show t...
متن کامل2D Dimensionality Reduction Methods without Loss
In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...
متن کاملA numerical technique for solving a class of 2D variational problems using Legendre spectral method
An effective numerical method based on Legendre polynomials is proposed for the solution of a class of variational problems with suitable boundary conditions. The Ritz spectral method is used for finding the approximate solution of the problem. By utilizing the Ritz method, the given nonlinear variational problem reduces to the problem of solving a system of algebraic equations. The advantage o...
متن کاملReducing Computational and Memory Cost of Substructuring Technique in Finite Element Models
Substructuring in the finite element method is a technique that reduces computational cost and memory usage for analysis of complex structures. The efficiency of this technique depends on the number of substructures in different problems. Some subdivisions increase computational cost, but require little memory usage and vice versa. In the present study, the cost functions of computations and me...
متن کاملDimensionality analysis of subsurface structures in magnetotellurics using different methods (a case study: oil field in Southwest of Iran)
Magnetotelluric (MT) method is an electromagnetic technique that uses the earth natural field to map the electrical resistivity changes in subsurface structures. Because of the high penetration depth of the electromagnetic fields in this method (tens of meters to tens of kilometers), the MT data is used to investigate the shallow to deep subsurface geoelectrical structures and their dimensions....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009